可能很多人都不知道Python核心編程是什么,其實《Python核心編程》(第二版)是一本書,2008年人民郵電出版社出版的圖書。這本書非常適合初學者學習,不過讓人印象深刻的還是Python核心編程的四大神器。因此有人會問Python核心編程的四大神器是什么?其實Python核心編程是迭代器、生成器 、閉包以及裝飾器。下面是詳細介紹。
生成器
生成器是生成一個值的特殊函數,它具有這樣的特點:第一次執行該函數時,先從頭按順序執行,在碰到yield關鍵字時該函數會暫停執行該函數后續的代碼,并且返回一個值;在下一次調用該函數執行時,程序將從上一次暫停的位置繼續往下執行。
通過一個例子來理解生成器的執行過程。求1-10的所有整數的立方并將結果打印輸出,正常使用列表的實現如下:
def lifang_ls():
"""求1-10所用整數的立方數-列表方式實現"""
ls = []
for i in range(1,11):
result = i ** 3
ls.append(result)
print(ls)
if __name__ == '__main__':
lifang_ls()
輸出結果如下:
當數據量很少時,可以很快得到結果。但是如果范圍擴大到10000甚至是100000000,就會發現程序執行時間會變長,變卡,甚至有可能會因超出內存空間而出現程序崩潰的現象。這是因為當數據量變得非常大的時候,內存需要開辟很大的空間去存儲這些數據,內存都被吃了,自然會變慢變卡。使用生成器就能解決這個問題。
對于上述同一個問題用生成器實現如下,將范圍擴大到1-10000000:
def lifang_generate():
"""求1-10000000所用整數的立方數-生成器方式實現"""
for i in range(1,10000001):
result = i ** 3
yield resultif __name__ == '__main__':
G = lifang_generate()
執行效果如下:
可以看到沒有任何的結果輸出,這說明程序已經可以順利執行。對于迭代器來講需要用next()方法來獲取值,修改主函數為以下情況可以打印輸出前4個整數的立方數:
if __name__ == '__main__':
G = lifang_generate()
print(next(G))
print(next(G))
print(next(G))
print(next(G))
輸出結果如下:
到此可以看到,生成器生成的值需要使用next()方法一個一個的取,它不會一次性生成所有的計算結果,只有在取值時才調用,這時程序會返回計算的一個值且程序暫停;下一次取值時從上一次中斷了的地方繼續往下執行。
以取出前3個值為例,下圖為生成器代碼解析圖:
圖解:Python解釋器從上往下解釋代碼,首先是函數定義,這時在計算機內存開辟了一片空間來存儲這個函數,函數沒有被執行,繼續往下解釋;到了主函數部分,首先執行藍色箭頭1,接著往下執行到藍色箭頭2第一次調用生成器取值,此時生成器函數lifang_generate()開始執行,執行到生成器函數lifang_generate()的藍色箭頭2碰到yield關鍵字,這時候生成器函數暫停往下執行并且將result的結果返回,由于是第一次執行,因此result存儲著1的立方的值,此時將1返回,第54行代碼print(first)將結果打印輸出。
主函數中程序接著往下執行到藍色箭頭3,生成器函數lifang_generate()第二次被調用,與第一次不同,第二次從上一次(也就是第一次)暫停的位置繼續往下執行,上一次停在了yield處,因此藍色箭頭3所作的事情就是執行yield后面的語句,也就是第48行print('end'),執行完成之后因for循環條件滿足,程序像第一次執行那樣,執行到yield處暫停并返回一個值,此時返回的是2的立方數,在第57行打印輸出8。
第三次調用(藍色箭頭4)與第二次類似,在理清了執行過程之后,程序執行結果如下:
迭代器
這里先拋出兩個概念:可迭代對象、迭代器。
凡是可以通過for循環遍歷其中的元素的對象,都是可迭代對象;之前學習得組合數據類型list(列表)、tuple(元組)、dict(字典)、集合(set)等,上一小節介紹得生成器也可以使用for循環來遍歷,因此,生成器也是迭代器,但迭代器不一定就是生成器,例如組合數據類型。
凡是可以通過next訪問取值得對象均為迭代器,生成器就是一種迭代器??梢钥吹?,生成器不僅可以用for循環來獲取值,還可以通過next()來獲取。
Python中有一個庫collections,通過該庫的Iterable方法來判斷一個對象是否是可迭代對象;如果返回值為True則說明該對象為可迭代的,返回值為False則說明該對象為不可迭代。用Iterator方法來判斷一個對象是否是迭代器,根據返回值來判斷是否為迭代器。
使用Iterable分別判斷列表,字典,字符串以及一個整數類型是否是可迭代對象的代碼如下:
from collections import Iterable
def isiterable():
"""分別判斷列表,字典,字符串100,整形100是不是可迭代對象"""
ls = isinstance([],Iterable)
dic = isinstance({},Iterable)
strs = isinstance('100',Iterable)
ints = isinstance(100,Iterable)
print('輸出True表示可迭代,False表示不可迭代
ls為{},dic為{},strs為{},ints為{}'.format(ls,dic,strs,ints))
def main():
isiterable()
if __name__ == '__main__':
main()
執行的輸出結果如下:
使用Iterator判斷一個對象是否是迭代器的代碼如下,與判斷是否為可迭代對象類似:
from collections import Iterable,Iterator
def print_num():
"""定義一個產生斐波那契數列的生成器"""
a,b = 0,1
for i in range(1,10):
yield b
a,b = b,a + b
def isiterator():
"""分別判斷列表,字典、生成器是否為迭代器"""
ls_ret = isinstance([],Iterator)
dict_ret = isinstance({},Iterator)
genarate_ret = isinstance((x * 2 for i in range(10)),Iterator)
print_num_ret = isinstance(print_num(),Iterator)
print('輸出True表示該對象為迭代器,False表示該對象不是迭代器
ls輸出為{},dict輸出為{},genarate輸出為{},print_num輸出為
{}'.format(ls_ret,dict_ret,genarate_ret,print_num_ret))
def main():
isiterator()
if __name__ == '__main__':
main()
輸出的結果如下:
組合數據類型不是迭代器,但是屬于可迭代對象,可以通過iter()函數將其轉換位迭代器,這樣就可以使用next方法來獲取對象各個元素的值,代碼如下:
from collections import Iterable,Iterator
def trans_to_iterator():
"""使用iter()將可迭代類型-列表轉換為迭代器"""
ls = [2,4,6,8,10]
ls_ierator = iter(ls)
ls_ierator_is = isinstance(ls_ierator,Iterator)
print('轉換后的返回值為{},使用next取出的第一個元素的值為
{}'.format(ls_ierator_is,next(ls_ierator)))
def main():
trans_to_iterator()
if __name__ == '__main__':
main()
輸出結果為:
閉包
內部函數對外部函數變量的引用,則將該函數與用到的變量稱為閉包。以下為閉包的例子:
def func(num):
print('start')
def func_in():
"""閉包內容"""
new_num = num ** 3
print(new_num)
return func_in
if __name__ == '__main__':
ret = func(10)
ret()
理解閉包是理解裝飾器的前提,同樣通過一張圖來理解閉包的執行過程:
圖解:Python解釋器從上往下解釋代碼,首先定義一個函數,func指向了該函數(紅箭頭所示);接著到主函數執行第14行代碼 ret = func(10),此時先執行賦值號“=”右邊的內容,這里調用了函數func()并傳入10這個實參,函數func()代碼開始執行,先是打印輸出“start”,接著定義了一個函數func_in(),func_in指向了該函數,函數沒有被調用,程序接著往下執行,return func_in 將函數的引用返回,第14行代碼用ret接收了這個返回值,到此ret就指向了func_in所指向的函數體(綠箭頭所示)。最后執行ret所指的函數。這就是閉包的整個過程,func_in()函數以及該函數內用到的變量num就稱為閉包。
裝飾器
代碼的編寫需要遵循封閉開放原則,封閉是指對于已有的功能代碼實現不允許隨意進行修改,開放是指能夠對已有的功能進行擴展。例如一款手游,現在已經能夠實現現有的游戲模式,但隨著外部環境的變化發展(市場競爭,用戶體驗等),現有的游戲模式已經不能滿足用戶的需求了。為了留住用戶,需要加入更多的玩法來保持用戶對該款游戲的新鮮感,于是開發方在原來游戲的基礎上又開發了好幾種游戲模式。像這樣,新的游戲版本既增加了先的游戲模式,又保留了原有的游戲模式,體現了封閉開放的原則。 裝飾器的作用就是在不改變原來代碼的基礎上,在原來的功能上進行拓展,保證開發的效率以及代碼的穩定性。 打印輸出九九乘法表可以通過以下代碼實現:
def func_1():
"""打印輸出九九乘法表"""
for i in range(1,10):
for j in range(1,i + 1):
result = i * j
print('{}*{}={}'.format(i,j,result),end=' ')
print('')
if __name__ == '__main__':
func_1()
輸出結果如下:
假如現在需要實現一個功能,在不修改func_1函數代碼的前提下,在九九乘法表前增加一個表頭說明,在乘法表最后也增加一個說明。下面的代碼實現了裝飾器的功能:
def shuoming(func):
def shuoming_in():
print('以下為九九乘法表:')
func()
print('以上為九九乘法表')
return shuoming_in
def func_1():
"""打印輸出九九乘法表"""
for i in range(1,10):
for j in range(1,i + 1):
result = i * j
print('{}*{}={}'.format(i,j,result),end=' ')
print('')
if __name__ == '__main__':
func_1 = shuoming(func_1)
func_1()
輸出結果如下:
可以看到func_1函數的代碼沒有任何修改,還實現了問題提出的要求,這其中的核心就在于最后兩行代碼。通過下圖來理解裝飾器執行的過程:
圖解:跟之前一樣,Python解釋器自上往下解釋代碼,遇到定義函數的代碼不用管,因為沒有調用函數是不會執行的;這樣直接就來到了第22行代碼中,程序先執行賦值號“=”右邊的代碼,shuoming(func_1)調用了之前定義的函數,并傳入了func_1實參,程序轉到shuoming(func)執行,形參func接收實參func_1,此時func也指向了func_1所指向的函數(如圖中分界線上方白色方框內的藍箭頭所示);在shuoming()函數中代碼繼續往下走,在shuoming()函數內容又定義了一個shuoming_in()函數(如圖中分界線上方白色方框內的藍色方框所示),接著往下,將shuoming_in()函數的引用返回,至此shuoming()函數執行完畢,程序回到第22行代碼執行,shuoming()函數的返回值被func_1接收,此時,func_1不在指向原來的函數,轉成指向shuoming_in所指向的函數(如圖中分界線下方白色方框內的黃色箭頭)。最后調用func_1所指向的函數,也就是shuoming_in()函數,shuoming_in()函數內的func指向了原來func_1()所指的函數(也就是生成九九乘法表的函數),因此程序最終的結果就在九九乘法表前后各加了一個說明性字符串。
以上為裝飾器的執行過程,但是以上裝飾寫法不夠簡潔,大多數情況下采取以下寫法,輸出結果是一樣的:
def shuoming(func):
def shuoming_in():
print('以下為九九乘法表:')
func()
print('以上為九九乘法表')
return shuoming_in
"""@shuoming相當于func_1 = shuoming(fucn_1)"""
@shuoming
def func_1():
"""打印輸出九九乘法表"""
for i in range(1,10):
for j in range(1,i + 1):
result = i * j
print('{}*{}={}'.format(i,j,result),end=' ')
print('')
if __name__ == '__main__':
"""直接調用func_1即可完成裝飾"""
func_1()
有時候有些被裝飾的函數可能有以下幾種情況:存在或不存在參數,有返回值或沒有返回值,參數可能定長或不定長等等,為了通用性,與爬蟲的請求代碼一樣,裝飾器有著通用的寫法:
def tongyong(func):
def tongyong_in(*args,**kwargs):
ret = func(*args,**kwargs)
return ret
return tongyong_in
使用這個裝飾器裝飾九九乘法表一樣可以正常輸出,如果需要特定的裝飾效果,修改這個通用代碼即可。
好了,關于Python核心編程的四大神器是什么相信大家已經知道了吧,想了解更多關于Python核心編程的信息,請繼續關注中培偉業。