內容簡介
機器學習是計算機科學的重要分支領域.本書作為該領域的入門教材,在內容上盡可能涵蓋機器學習基礎知識的各方面.全書共16章,大致分為3個部分:第1部分(第1~3章)介紹機器學習的基礎知識;第2部分(第4~10章)討論一些經典而常用的機器學習方法(決策樹、神經網絡、支持向量機、貝葉斯分類器、集成學習、聚類、降維與度量學習);第3部分(第11~16章)為進階知識,內容涉及特征選擇與稀疏學習、計算學習理論、半監督學習、概率圖模型、規則學習以及強化學習等,每章都附有習題并介紹了相關閱讀材料,以便有興趣的讀者進一步鉆研探索.本書可作為高等院校計算機、自動化及相關專業的本科生或研究生教材,也可供對機器學習感興趣的研究人員和工程技術人員閱讀參考。